If it's not what You are looking for type in the equation solver your own equation and let us solve it.
99x+9x^2=108
We move all terms to the left:
99x+9x^2-(108)=0
a = 9; b = 99; c = -108;
Δ = b2-4ac
Δ = 992-4·9·(-108)
Δ = 13689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13689}=117$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(99)-117}{2*9}=\frac{-216}{18} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(99)+117}{2*9}=\frac{18}{18} =1 $
| n-4=40 | | -3x=9-2x^2 | | 3(2n-5)=6+2(n-3) | | 4(2m-3)=3m-27 | | X-7;x=3 | | 2(2y-3)=y-18 | | 40x=-4x^2-100 | | -28x+40=-4x^2 | | |-2.2-x|=3 | | 5x+3=8x-5x | | (x-1)+121=90 | | 13-3t=4(t-2) | | -K^2+-5k+16=0 | | -K2+-5k+16=0 | | 4/7x+1/3=3/7-3/7x+3/7 | | 4n+32=8 | | 2*12^(10x+2)=2 | | 2y^2-26y+80=0 | | 7Y=-21x+35 | | 2080*x+300*1.5*x=90000 | | 44x^2-19x=0 | | 2(y^2-13y+40)=0 | | (x+8)+42=90 | | 4.7q-2.5-5.9q=-0.2q-2.5 | | (90+82+81+2x)/5=86 | | 90+82+81+2x/5=86 | | 2x-25=58 | | -10x+5=3-10x+2 | | 3t+2+2t-4t=1+3 | | -7=v+6 | | -7+w=-4 | | 1/6(6x+9)=12 |